ment between the calculated and experimental Ag_2SO_4 solubilities is surprisingly good. This may be interpreted as evidence in favor of the validity of basis (c) for the dissociation of $In_2(SO_4)_3$ at the higher concentration, although actually one can only conclude that the magnitude of the ionic strength is consistent with basis (c).

Summary and Conclusions

The e.m.f. of the cell In, $In_2(SO_4)_3(m)$, Ag_2SO_4 -(sat), Ag was studied as a function of $In_2(SO_4)_3$ concentration and temperature. Since it did not appear feasible to extrapolate to zero concentration to obtain E^0 values relative activities only were obtained based on the value at 0.1 m. The log of these ratios was approximately proportional to the concentration at any one temperature. No unique interpretation in terms of solute species could be made. E.m.f., conductivity and solubility data all indicate that $In_2(SO_4)_3$ is not completely dissociated into In^{+++} and $SO_4^{=}$ ions in any part of the concentration range studied. The conductivity and solubility data are qualitatively consistent with dissociation of $In_2(SO_4)_3$ into $InSO_4^+$ and $In-(SO_4)_2^-$ ions at the higher concentrations and with further dissociation of these species in the more dilute range. On the other hand, at the highest concentrations the rapid change of the activity coefficient of $In_2(SO_4)_3$ on a 1-1 electrolyte basis with mand the low magnitude of Λ_m appear to be inconsistent with expectations for a strong 1-1 electrolyte. **Acknowledgment.**—The authors wish to express

Acknowledgment.—The authors wish to express their appreciation to Dr. T. F. Young of the University of Chicago for interesting discussions concerning this work.

Oak Ridge, Tennessee

[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, UNIVERSITY OF MICHIGAN]

Heat Capacity and Thermodynamic Functions of Uranyl Chloride from 6 to 350° K.¹

BY ELLIOTT GREENBERG AND EDGAR F. WESTRUM, JR.

RECEIVED APRIL 23, 1956

The heat capacity of pure anhydrous uranyl chloride was measured from 6 to 350° K. and the entropy, enthalpy and free energy function calculated from these data. At 298.16°K., the molal values of C_p , S^0 and $H^0 - H_0^1$ are 25.78 \pm 0.04 cal./ deg., 35.98 ± 0.05 cal./deg., and 5157 ± 8 cal., respectively. There was no detectable evidence of anomalous heat capacity behavior or significant magnetic contributions to the thermal properties.

Despite the increasing scientific and technological interest in uranium chemistry, the chemical thermodynamic data on important uranium compounds are in many instances inconsistent, estimated or unknown. Furthermore, the thermodynamic functions based on thermal data are frequently rendered insecure by the possibility of substantial magnetic contributions at temperatures below those of the heat capacity measurements. The heat capacity of anhydrous, crystalline uranyl chloride (UO_2Cl_2) was determined as part of a continuing study of the thermodynamic properties of the compounds of the actinide elements. The data and functions derived herein should prove of considerable utility in chemical calculations when supplementary thernuochemical data become available.

Experimental

Preparation of Uranium Tetrachloride.—Uranyl nitrate hexahydrate (500 g., Mallinckrodt A.R. grade, No. 8640) was treated with a large excess (850 ml.) of concentrated hydrochloric acid, and the mixture was evaporated to dryness. The resulting uranyl chloride was refluxed for an hour at 150° with four times the stoichiometric quantity (1 kg.) of hexachloropropene.^{3,3} The supernatant liquid was then drawn off through a sintered-glass filter stick, and the uranium tetrachloride was washed repeatedly with carbon tetrachloride until the washings were colorless. This procedure was carried out in a closed system in order to protect

(1) Adapted from a portion of the thesis of Elliott Greenberg, submitted to the Graduate School of the University of Michigan in partial fulfillment of the requirements of the Ph.D. degree. This work was supported in part by the U. S. Atomic Energy Commission, Division of Research, Sub-Contract AT(11-1)-70, No. 5.

(2) Reported in: J. J. Katz and E. Rabinowitch, "The Chemistry of Uranium," McGraw-Hill Book Co., Inc., New York, N. Y., 1951, pp. 468-470.

(3) J. J. Katz, private communication.

the uranium tetrachloride from atmospheric moisture. Most of the remaining carbon tetrachloride was removed by evacuation, and the last traces by heating to $250-300^{\circ}$ under high vacuum for several hours. The anhydrous material was sublimed twice under high vacuum in a Pyrex glass tube at about 495°. Ignition in air of the sublimed dark-green crystals indicated 62.38 and 62.62% uranium (theoretical 62.67%). Gravimetric analysis for chloride, by precipitation with silver nitrate, indicated 37.26 and 37.27% (theoretical 37.33%).

Preparation of **Uranyl** Chloride.—Finely ground uranium tetrachloride was converted to uranyl chloride (UO_2Cl_2) , in a system protected from moisture, by reaction at 300–350° with oxygen dried over anhydrous magnesium perchlorate. Attempts to minimize sintering by gradually increasing the temperature were unsuccessful; consequently, the procedure of grinding and treating with oxygen was twice repeated in order to effect complete conversion of the sample. The bright yellow product was analyzed by the methods already indicated, and found to contain 69.68 and 69.83% uranium (theoretical 69.82%), and 20.65 and 20.72% chlorine (theoretical 20.79%).

Throughout the course of this work all transfers of hygroscopic material were performed in a dry box. Cryogenic Technique.—The Mark I adiabatic cryostat

Cryogenic Technique.—The Mark I adiabatic cryostat used for these measurements has been developed previously.⁴

The calorimeter (Laboratory Designation W-9) is similar in design and dimensions to W-6⁸ except for two modifications: only four conduction vanes were used, and protection against possible corrosion was achieved by a 0.03 mm. gold plate on the interior surfaces. Apiezon T vacuum grease was used to provide thermal conduction in the thermocouple sleeve and in the thermometer-heater well. The calorimeter contained 2.0 cm. helium pressure to improve thermal conduction to the sample. A 150-ohm constantan, glass-fiber insulated wire was bifilarly wound in a conforming double thread in the heater sleeve.

Temperatures were measured with a capsule-type platinum resistance thermometer (Laboratory Designation A-3)

- (4) Edgar F. Westrum, Jr., and A. F. Beale, Jr., to be published.
- (5) E. Benjamins and E. F. Westrum, Jr., to be published.

inserted within the heater sleeve in the axial calorimetric well. The thermometer was calibrated by the National Bureau of Standards against the International Tempera-ture Scale above 90°K., and by comparison at 19 tempera-tures with the Bureau's platinum thermometers⁶ over the range 10-90°K. Below 10°K, we established a provisional tem

TABLE II

MOLAL THERMODYNAMIC FUNCTIONS OF URANYL CHLORIDE

temperature	scale by fitting	g the constants in	n the equation			
	Т	ABLE				
Molal Heat Capacity of Uranyl Chloride (in Cal. per						
TOF	וע רי	EGREE) T °V	Ca			
и, к.	Cp	1, A. 000 14	04.09			
5	eries 1	233.14	24.08			
	<u> </u>	241.86	24.34			
246.58	24.46	250.91	24.59			
256.05	24.74	260.52	24.86			
265.76	25.02	270.26	25.14			
275.72	25.24	279.95	25.36			
285.61	25.50	289 , 69	25.59			
295.16	25.69					
		299.43	25.80			
Series II		309.18	26.02			
		319.01	26.24			
7.09	0.086	328.95	26.39			
8.21	0.139	338.94	26.57			
18.64	1.562					
20.42	1.885					
22.49	2.294	Serie	es III			
24.91	2.775	5.66	0.057			
27.49	3.296	6.40	.059			
30.35	3.870	7.46	.095			
33 54	4 503	8 46	169			
37 02	5 180	9 45	265			
01.02	0.100	0,10	.200			
40.86	5.913	10.47	.367			
44.65	6.627	11.50	.487			
48.91	7.430	12.55	. 590			
54.01	8.376	13.72	.750			
59.37	9.389	15.03	.944			
64.95	10.39	16.46	1.170			
70.64	11.36	18.11	1.457			
76.63	12.36	20.04	1.813			
83.21	13.43	22.19	2.234			
90.07	14.44	24.46	2.685			
97.31	15.41	26.96	3.189			
105.15	16.36	29.77	3.753			
113.09	17.24					
		32.80	4.360			
120.82	18.04	36.26	5.036			
128.53	18.74	40.34	5.813			
136.22	19.37	44.84	6.658			
144.18	19.96	254.49	24.69			
152.80	20.55					
		265.33	25.01			
161.71	21.09	276.12	25.25			
170.95	21.61	285.80	25.49			
180.53	22.08	295.67	25.74			
190.03	22.51	305.67	25.96			
199.35	22.90					
		315.67	26.18			
208.55	23.24	325.64	26.36			
216.49	23.52	335.59	26.58			
224.31	23.79	345.55	26.73			

(6) H. J. Hoge and F. G. Brickwedde, J. Research Natl. Bureau Standards, 22, 351 (1939).

	_			$-(F^0 -$
<i>T</i> , ⁰K.	Cp, cal./deg.	S⁰, cal./deg.	$(H^0 - H^0_0),$ cal.	H_0^0/T , cal./deg.
10	0.312	0.104	0.78	0.026
15	0.939	0.338	3.77	.087
20	1.803	0.723	10.56	. 195
25	2.792	1.231	22.04	. 350
30	3.798	1.829	38.52	.545
35	4.794	2.490	60.00	.776
40	5.746	3.193	86.36	1.034
45	6.690	3.924	117.45	1.314
5 0	7.631	4.678	153.26	1.613
60	9.506	6.234	238.90	2.252
70	11.25	7.832	342.79	2.935
80	12.90	9.444	463.71	3.648
90	14.42	11.054	600.5	4.382
100	15.74	12.643	751.4	5.129
1 10	16.90	14.198	914.8	5.882
120	17.94	15.715	1089.1	6.639
130	18.86	17.189	1273.2	7.395
140	19.66	18.616	1465.9	8.146
150	20.36	19.997	1666.0	8.890
160	21.00	21.332	1872.9	9.626
170	21.56	22.622	2085.7	10.353
180	22.06	23.869	2303.9	11.070
190	22.52	25.073	2526.8	11.774
200	22.92	26.239	2754.0	12.469
210	23.30	27.367	2985.1	13.152
220	23 . 64	28.458	3219.8	13.823
230	23.97	29.517	3457.8	14.483
240	24.28	30.544	3699.1	15.131
250	24 , 57	31.540	3943.4	15.766
260	24.85	32.509	4190.5	16.392
270	25.12	33.452	4440.3	17.006
280	25.36	34 , 370	4692.7	17.610
290	25 . 60	35.265	4947.5	18.205
300	25.82	36.136	5204.7	18.787
350	26.82	40.194	6521.6	21.561
273.16	25.19	33.745	4519.8	17.199
298.16	25.78	35.977	5157.2	18.680

 $R = A + BT^2 + CT^5$ to the observed resistance of the thermometer at 10° K., the resistance at the boling point of helium, and dR/dT at 10° K. The temperature scale thus defined probably agrees with the thermodynamic scale to 0.1° below 10° K., 0.03° from 10 to 90° K. and 0.05° from 90 to 400°K.

Measurements of temperature and of electrical energy were made with an autocalibrated White double potentiometer. A timer, operated by an electrically driven 240cycle tuning fork and amplifier, automatically indicated the duration of the energy input. Three independent deter-minations of the heat capacity of the empty calorimeter have been made over the entire temperature range. The accuracy of the calorimeter was ascertained by measuring the heat capacity of a standard sample of benzoic acid.

Results

The experimental values of the molal heat capacity of uranyl chloride are presented in Table I. The results include small corrections for curvature⁷ and also for slight differences in the amounts of helium and solder between the full and the empty calorimeter. The temperature increments of the individual determinations can be inferred from the adjacent mean temperatures. The data are expressed in terms of the defined thermochemical

(7) N. S. Osborne, H. F. Stimson, C. S. Sligh and C. S. Cragoe, Bur. Standards Sci. Papers, 20, 65 (1925).

calorie equal to 4.1840 absolute joules. The ice point is taken to be 273.16°K., and the molecular weight of UO_2Cl_2 as 340.98 g. A 190.623-g. (*in vacuo*) sample of UO_2Cl_2 was used.

The molal heat capacity and thermodynamic functions derived by numerical quadrature from the heat capacity are listed at rounded temperatures in Table II. The heat capacity values were read from a smooth curve through the experimental points, and they are estimated to have a probable error of 0.1% above 25°K., 1% at 10°K. and 8% at 5°K. A Debye T^3 extrapolation was used to obtain values of the thermodynamic functions below 10°K. This formulation yielded heat capacities consistent with the experimental data below 10°K. and assumes the absence of significant thermal anomalies in the extrapolation region below 5.2°K. The effects of nuclear spin and isotope mixing are not included in the entropy and the free energy function. We estimate a probable error in the entropy, heat content and free energy function of 0.1% above 100°K., but in order to make Table II internally consistent, some of the values are given to one more digit than is justified by the estimated probable error.

As a test of the over-all accuracy of the calorimetric process and of the enthalpy increment obtained by integration of the heat capacity, direct determinations of the enthalpy increment were made by measuring the temperature change produced by continuous input of electrical energy. Heating the sample from 47.16 to 79.21°K. required 321.4 cal. deg.⁻¹ mole⁻¹ and from 78.33 to 249.63°K. required 3492.0 cal. deg.⁻¹ mole⁻¹. The values calculated by numerical quadrature of the heat capacity *versus* the temperature yielded 321.2 and 3491.8 cal. deg.⁻¹ mole⁻¹, respectively, in excellent agreement with the direct determination.

Discussion

The thermodynamics of the formation of uranyl chloride from the elements at 298.16°K.

 $U(c,\alpha) + O_2(g) + Cl_2(g) \longrightarrow UO_2Cl_2(c)$

may be evaluated from the standard entropies of uranium,⁸ oxygen and chlorine,⁹ and the molal free energy of formation of $\rm UO_2Cl_2$ given by Bozic and Gal.¹⁰ The molal values for $\rm UO_2Cl_2(c)$ at 298.16°K. are

 $\begin{array}{l} \Delta S_{\rm f}^{0} = -78.34 \, \pm \, 0.08 \, {\rm cal./deg.} \\ \Delta F_{\rm f}^{0} = -277 \, {\rm kcal.^{10}} \\ \Delta H_{\rm f}^{0} = -300 \, {\rm kcal.} \end{array}$

Acknowledgment.—The support of the U. S. Atomic Energy Commission, the assistance of Mr. George E. Grenier in making the measurements, and of Mrs. Emilia R. Martin with the calculations are gratefully acknowledged.

(8) Reported in: J. J. Katz and E. Rabinowitch, ref. 2, p. 146.

(9) "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards Circular 500, U. S. Govt. Printing Office, Washington, D. C., 1952.

(10) B. I. Bozic and O. Gal, Z. anorg. allgem. Chem., **273**, 84 (1953). This value is given without any indication of origin or probable error.

ANN ARBOR, MICHIGAN

[CONTRIBUTION FROM THE MONSANTO CHEMICAL COMPANY, RESEARCH DEPARTMENT, INORGANIC CHEMICALS DIVISION]

Structure and Properties of the Condensed Phosphates. XI. Hydrolytic Degradation of Graham's Salt

By J. F. McCullough, J. R. VAN WAZER AND E. J. GRIFFITH Received April 6, 1956

The initial rate of formation of end groups and of orthophosphate in 1% solutions of Graham's salt, both in the presence and absence of 0.5 M NaBr as swamping electrolyte, was measured as a function of pH and temperature. Chromatograms run on a series of samples taken during hydrolysis at controlled pH values of 4, 7 and 10 were used to help interpret the data. According to the picture developed here, hydrolytic degradation in neutral and alkaline solution consists primarily of scission at the ends of the long chains with concomitant formation of rings (nearly all trimetaphosphate). In acidic solution there is also some random scission along the chain. The presence of rings larger than the tetrametaphosphate and of occasional branching points in Graham's salt is discussed.

A considerable body of evidence¹ has now been built up to show that the vitreous sodium phosphates for which the Na₂O/P₂O₅ mole ratio ≥ 1.00 consist of a distribution² of various sized phosphate molecule-ions—for the most part straight chains with the average chain length increasing as Na₂O/ P₂O₅ approaches unity. The term "Graham's Salt" is applied to those glasses (containing largesized straight-chain phosphates) for which Na₂O/

(1) C. F. Callis, J. R. Van Wazer and P. G. Arvan, Chem. Revs., 54, 785 (1954).

(2) A quantitative distribution theory and some supporting evidence are given by J. R. Van Wazer, THIS JOURNAL, **72**, 644, 647 (1950), to show that a random reorganization distribution of straight-chain phosphates with an additional small amount of rings gives a first approximation fit to the size distribution of phosphate glasses for which Na_2O/P_2O_5 is approximately unity. Also see paper XII in this series. P_2O_5 is exactly one. The exact chain length (number of phosphorus atoms per chain = \bar{n}) of a given sample of Graham's salt depends on the residual water left in the Na₂O·P₂O₅ glass, since $(\bar{n} + 2)/\bar{n} = (Na_2O + H_2O_{compn.})/P_2O_5$. Hence, the term Graham's salt refers to a series of glasses exhibiting average chain lengths ranging from a lower value of 30–40 to several hundreds.

This study of the hydrolytic degradation of Graham's salt is a continuation of our more detailed work³ on the degradation of the pyro- and tripolyphosphates; and, for the most part, identical experimental techniques were used in both investigations. However, this study is not as detailed as

(3) J. R. Van Wazer, E. J. Griffith and J. F. McCullough, *ibid.*, **77**, 287 (1955),